A GENERALIZED 0-2 LAW

BY S. R. FOGUEL

ABSTRACT

A common generalization to 0-2 laws proved by M. Lin and myself is established. The proof here is a combination of the two proofs.

We shall use the Notation and Definitions of [1]. In particular Markov operators, Conservative Markov operators, $P_1 \wedge P_2$ are all defined there. Put $\Sigma_i(P) = \{A : P1_A = 1_A\}.$

Throughout this paper we assume:

P,
$$Q_1$$
 and Q_2 are commuting Markov operators with $P1 = Q_1 1 = Q_2 1 = 1$

DEFINITION 1.

$$h_n = \sup \{ P^n (Q_1 - Q_2) f : -1 \le f \le 1 \},\$$

$$h_{\infty}=\lim_{n\to\infty}h_n.$$

NOTE. The sup is in L_{∞} sense. The convergence of the functions h_n follows from (b).

(a) $0 \le h_n \le 2$: obvious.

(b) $h_{n+1} \leq h_n$:

$$P^{n+1}(Q_1-Q_2)f = P^n(Q_1-Q_2)Pf \leq h_n$$

whenever $-1 \leq f \leq 1$.

(c) $h_{n+1} \leq Ph_n$:

$$P^{n+1}(Q_1 - Q_2)f = P[P^n(Q_1 - Q_2)f] \leq Ph_n.$$

Received January 24, 1983

(d) $h_{\infty} \leq Ph_{\infty}$: Use (c). (e) $(P^{n}Q_{1} \wedge P^{n}Q_{2})1 = 1 - \frac{1}{2}h_{n}$: $(P^{n}Q_{1} \wedge P^{n}Q_{2})1 = \inf\{P^{n}Q_{2}g + P^{n}Q_{1}(1-g): 0 \leq g \leq 1\}$ $= 1 - \sup\{P^{n}(Q_{1} - Q_{2})g: 0 \leq g \leq 1\} = 1 - \frac{1}{2}\sup\{P^{n}(Q_{1} - Q_{2})f: -1 \leq f \leq 1\}$ by f = 2g - 1. Let $P1_{E} = 1_{E}$ and $0 \leq g \leq 1$, then

$$0 \leq 1_{E'} P(1_{E}g) \leq 1_{E'} P 1_{E} = 0,$$

$$0 \leq 1_{E} P(1_{E'}g) \leq 1_{E} P 1_{E'} = 0.$$

Thus

$$P(1_Eg) = (1_E + 1_{E'})P(1_Eg) = 1_EP(1_Eg) = 1_EP(1_Eg) + 1_EP(1_{E'}g) = 1_EPg.$$

It is interesting to note that if $0 \le e \le 1$ and Pe = e then it does not follow necessarily that P(eg) = ePg.

(f) If $P1_E = Q_1 1_E = Q_2 1_E = 1_E$ then

$$(PQ_1 \wedge PQ_2)(1_Eg) = 1_E (PQ_1 \wedge PQ_2)g \quad \text{whenever } 0 \le g \le 1:$$

$$(PQ_1 \wedge PQ_2)(1_Eg) = \inf \{PQ_1(1_Egk) + PQ_2(1_Eg(1-k)): 0 \le k \le 1\}$$

$$= 1_E \inf \{PQ_1(gk) + PQ_2(g(1-k)): 0 \le k \le 1\}$$

$$= 1_E (PQ_1 \wedge PQ_2)g.$$

THE 0-2 LAW. Assume

(1) $P' = Q_1 Q_2$ for some *r*.

(2) P is conservative.

(3) $\Sigma_i(P)$ is invariant under Q_1 and Q_2 .

(4) $\Sigma_i(P^d) = \Sigma_i(P)$ for every integer d.

Then h_{∞} assumes the values 0 or 2 only.

REMARK. In [2, theorem 2.2.5] (3) and (4) are replaced by the assumption that P^{d} is ergodic for every integer d.

In [3] Lin proved the 0-2 law for $Q_1 = I$ and $Q_2 = P$. We shall see later that in Lin's case we may assume (4).

PROOF. By (d) h_{∞} is invariant under *P*. Thus $\{x : h_{\infty}(x) \leq 2(1-\varepsilon)\} \in \Sigma_i(P)$ for a fixed $\varepsilon > 0$. By (3) we may replace X with this set:

(*) With no loss of generality we assume

 $h_{\infty} \leq 2(1-\varepsilon)$ for some $\varepsilon > 0$.

220

Thus (1)-(4) plus (*) should imply $h_{\infty} = 0$.

Put

$$\tilde{R}_n = P^n Q_1 \wedge P^n Q_2.$$

Let e, to be chosen later, satisfy $0 \le e \le 1$, Pe = e. Since P is conservative we may approximate e uniformly by step functions that are $\Sigma_i(P)$ measurable: We may use (f) for e:

$$\tilde{R}_n(eg) = e\tilde{R}_n g, \qquad 0 \leq g \leq 1.$$

Now, by (*), and (e)

$$\tilde{R}_n e = e\tilde{R}_n 1 \uparrow e(1 - \frac{1}{2}h_{\infty}) \geq \varepsilon e.$$

Choose k_1 with $\tilde{R}_{k_1}e \neq 0$. If k_1, \dots, k_i are chosen then

$$\tilde{R}_{k_1}\cdots\tilde{R}_{k_i}R_n e \bigwedge_{n\to\infty} \tilde{R}_{k_1}\cdots\tilde{R}_{k_i}e(1-\frac{1}{2}h_\infty) \ge \varepsilon \tilde{R}_{k_1}\cdots\tilde{R}_{k_i}e$$

Thus

(**) Given e satisfying $0 \le e \le 1$, Pe = e there exists a subsequence k_i , that depends on e, such that $\tilde{R}_{k_1} \cdots \tilde{R}_{k_n} e \ne 0$, for every n.

Denote: $R_i = \tilde{R}_{k_i}$, $r_i = k_i + r$. Now $R_i \leq P^{k_i}Q_1 \Rightarrow R_iQ_2 \leq P^{r_i}$ by (1). Similarly

$$R_i \leq P^{k_i} Q_2 \Rightarrow R_i Q_1 \leq P'_i.$$

Thus we may use the calculations [1, p. 289]:

- (i) $P^{r_1+\cdots+r_n} = R_1 \cdots R_n (1/2^n) (Q_1 + Q_2)^n + S_n; S_n \ge 0.$
- (ii) $P^{(r_1+\cdots+r_n)j} = T_{j,n}(1/2^n)(Q_1+Q_2)^n + (S_n)^j; T_{j,n} \ge 0.$

(iii) $P^{(r_1+\cdots+r_N)j}(Q_1-Q_2)f \leq \sqrt{(6/N)} + 2(S_N)^j 1$ whenever $-1 \leq f \leq 1$.

Equations (i) and (ii) are proved by induction. To obtain Equation (iii) use

$$\left\| \frac{1}{2^{N}} (Q_{1} + Q_{2})^{N} (Q_{1} - Q_{2}) \right\| \leq \frac{2}{2^{N}} + \frac{1}{2^{N}} \sum_{k=0}^{N} \left| \binom{N}{k} - \binom{N}{k+1} \right|$$
$$\leq \frac{3}{2^{N}} \binom{N}{\frac{1}{2}N}.$$

(Assume N is even.) Now

$$\frac{1}{2^N} \binom{N}{\frac{1}{2}N} \leq \frac{1}{\sqrt{3\frac{N}{2}+1}} \leq \sqrt{\frac{2}{3N}}.$$

Fix N, to be chosen later, then $(S_N)^j 1 \downarrow \varphi_N$ as $j \to \infty$. Thus $S_N \varphi_N = \varphi_N, 0 \le \varphi_N \le 1$. By (i)

$$P^{r_1+\cdots+r_N}\varphi_N \geq \varphi_N.$$

By conservativeness we have equality. Use Assumption (4) to conclude $P\varphi_N = \varphi_N$. Use Assumption (3) to conclude $Q_1\varphi_N = Q_2\varphi_N = \varphi_N$. Now Equation (i) implies

(***) $R_1 \cdots R_n \varphi_N = 0$ for all n.

Let us use Equation (iii) when N is fixed and $j \rightarrow \infty$:

$$h_{\infty} \leq \sqrt{\frac{6}{N}} + 2\varphi_N.$$

Thus $2\varphi_N \ge (h_\infty - \sqrt{(6/N)})^+$ and by (***)

(****) $R_1 \cdots R_n ((h_{\infty} - \sqrt{(6/N)})^+) = 0$ for all n.

Assume, to the contrary, that $h_{\infty} \neq 0$. Choose N so that $(h_{\infty} - \sqrt{(6/N)})^{+} \neq 0$. Then (****) contradicts (**) when

$$e = \left(h_{\infty} - \sqrt{\frac{6}{N}}\right)^{+}.$$

In the rest of this paper we study: when is $\Sigma_i(P^d) = \Sigma_i(P)$ for every d. We shall assume that P is conservative.

Let $\phi \neq A \in \Sigma_i(P^d)$. Find the largest subset of A in $\Sigma_i(P)$ and take its complement in A:

With no loss of generality we shall assume that A contains no non-zero subsets in $\Sigma_i(P)$.

Fix 0 < j < d and put $f = P^{j} 1_{A}$. Then $0 \le f \le 1$ and $P^{d-j} f = 1_{A}$. Let $B_{n} = \{x : f(x) \ge 1/n\}, 1_{B_{n}} \le nf$.

If $x \in A'$ then $P^{d-j} \mathbb{1}_{B_n}(x) \leq n P^{d-j} f(x) = 0$. Therefore $P^{d-j} \mathbb{1}_{B_n} \leq \mathbb{1}_A$. Let $n \to \infty$, then

$$B_n \uparrow B = \{x : f(x) > 0\}.$$

Note $P^{d-j} 1_B \leq 1_A = P^{d-j} f.$

But $f \leq 1_B$ hence we have equality:

$$P^{d-j}(1^B-f)=0 \Rightarrow \sum_{n=0}^{\infty} P^n(1_B-f) < \infty \Rightarrow 1_B=f.$$

Vol. 45, 1983

Let us denote

$$P^{j}1_{A}=1_{A_{j}}, \qquad A_{0}=A_{d}=A.$$

Let k be the first integer with $A_0 \cap A_k \neq \emptyset$.

Put $B = A - A \cap A_k$. Then $B \in \Sigma_i(P^d)$ and $B \subset A$. Thus $B_j \cap B \subset A_j \cap A = \emptyset$ if j < k but $B_k \cap B \subset A_k \cap B = \emptyset$.

Now we may have $B = \emptyset$ in which case $A_0 \subset A_k$, or, by conservativeness, $A_0 = A_k$ but $A_i \cap A_0 = \emptyset$, 0 < i < k. If $B \neq \emptyset$ we may continue this procedure and in at most d steps we find

LEMMA A. Let $\phi \neq A \in \Sigma_i(P^d)$ contain no non-zero subsets in $\Sigma_i(P)$. There exists a set $\phi \neq E \in \Sigma_i(P^d)$ with $E \subset A$, $P^i 1_E = 1_{E_i}$ where $E_0 = E_k = E$ for some $k \leq d$, and $E_i \cap E_j = \emptyset$ if $0 \leq i < j < k$.

PROOF. $E_0 \cap E_i = \emptyset$ for 0 < j < k. Now if $E_i \cap E_i \neq \emptyset$ for $0 \le i < j < k$ then

$$0 \neq P^{\kappa_{-j}} \mathbf{1}_{E_i \cap E_i} \leq \min(\mathbf{1}_{E_0}, \mathbf{1}_{E_{k-i+i}})$$

a contradiction.

DEFINITION 2. A set E satisfying the Conditions of Lemma A is called a cyclic set of order k.

COROLLARY. $\Sigma_i(P^d) = \Sigma_i(P)$ if there are no non-zero cyclic sets of order k, $1 < k \leq d$.

NOTE. Let E be a cyclic set of order k.

$$(I-P)P^{nk}(1_E - 1_{E'}) = (I-P)P^{nk}(21_E - 1)$$

= $2(I-P)1_E$.

Hence, in Lin's case, $h_{n_k}(x) = 2$ on E and so does h_{∞} :

$$h_{\infty} \leq 2(1-\varepsilon) \Rightarrow \Sigma_i(P^d) = \Sigma_i(P)$$
 for every d.

Let us conclude with an observation on conservative and ergodic Markov operators: Let $\phi \neq A \in \Sigma_i(P^d)$ contain no non-zero subsets in $\Sigma_i(P)$.

Choose $E \neq \emptyset$ a cyclic subset of A of order k where k is maximal. Note $k \leq d$, $E \in \sum_{i} (P^{k})$ and $E \in \sum_{i} (P^{d})$. Now $(I - P) \sum_{i=0}^{k-1} P^{i} \mathbf{1}_{E} = 0$ and by ergodicity $\bigcup_{i=0}^{k-1} E_{i} = X$.

If $B \in \Sigma_i(P^d)$ and $B \cap E_j \neq \emptyset$ then a cyclic subset F, of $B \cap E_j$, of order m will satisfy

$$1 = \sum_{i=0}^{m} P^{i} \mathbf{1}_{F} \leq \sum_{i=0}^{m} P^{i} \mathbf{1}_{E_{i}} \leq 1$$

since, by maximality, $m \leq k$. Therefore m = k and $F = E_i$: either $B \cap E_i = \emptyset$ or $B \cap E_i = E_i$. In other words

$$\Sigma_i(P^d) = \{E_0, E_1, \cdots, E_{k-1}\}.$$

References

1. Shaul R. Foguel, Harris operators, Isr. J. Math. 33 (1979), 281-309.

2. Shaul R. Foguel, Selected topics in the study of Markov operators, Carolina Lecture Series, University of North Carolina at Chapel Hill, 1980.

3. Michael Lin, On the 0-2 law for conservative Markov operators, Z. Wahrscheinlichkeitstheor. Verw. Geb. 61 (1982), 513-525.

INSTITUTE OF MATHEMATICS

THE HEBREW UNIVERSITY OF JERUSALEM JERUSALEM, ISRAEL